Comparison Game On Trace Ideals

Jialiang He

College of Mathematics Sichuan University Chengdu, China

Winter School in Abstract Analysis section Set Theory & Topology Hejnice, Feb 5, 2016

Let X be a countable set and I ⊆ P(X), I is called an ideal if:
(1). [X]^{<ω} ⊆ I.
(2). B ∈ I, A ⊆ B ⇒ A ∈ I.
(3). A, B ∈ I ⇒ A ∪ B ∈ I. An ideal I is called P-ideal if
(4) ∀{B_n : n ∈ w} ⊂ I ∃B ∈ I(∀n ∈ wB_n ⊂* B)

And the Borel (Analytic) we means Borel (Analytic) subset of $\mathcal{P}(X) \approx 2^X$.

→ < ∃→

Let X be a countable set and I ⊆ P(X), I is called an ideal if:
(1). [X]^{<ω} ⊆ I.
(2). B ∈ I, A ⊆ B ⇒ A ∈ I.
(3). A, B ∈ I ⇒ A ∪ B ∈ I. An ideal I is called P-ideal if
(4). ∀{B_n : n ∈ ω} ⊆ I, ∃B ∈ I(∀n ∈ ωB_n ⊆* B).

And the Borel (Analytic) we means Borel (Analytic) subset of $\mathcal{P}(X) \approx 2^X$.

伺 ト く ヨ ト く ヨ ト

Let X be a countable set and $\mathcal{I} \subseteq \mathcal{P}(X)$, \mathcal{I} is called an **ideal** if: (1). $[X]^{<\omega} \subseteq \mathcal{I}$. (2). $B \in \mathcal{I}, A \subseteq B \Longrightarrow A \in \mathcal{I}$. (3). $A, B \in \mathcal{I} \Longrightarrow A \cup B \in \mathcal{I}$. An ideal \mathcal{I} is called P-**ideal** if (4). $\forall \{B_n : n \in \omega\} \subseteq \mathcal{I}, \exists B \in \mathcal{I}(\forall n \in \omega B_n \subseteq^* B)$.

And the Borel (Analytic) we means Borel (Analytic) subset of $\mathcal{P}(X) \approx 2^X$.

Let X be a countable set and I ⊆ P(X), I is called an ideal if:
(1). [X]^{<ω} ⊆ I.
(2). B ∈ I, A ⊆ B ⇒ A ∈ I.
(3). A, B ∈ I ⇒ A ∪ B ∈ I. An ideal I is called P-ideal if
(4). ∀{B_n : n ∈ ω} ⊆ I, ∃B ∈ I(∀n ∈ ωB_n ⊂* B).

And the Borel (Analytic) we means Borel (Analytic) subset of $\mathcal{P}(X)\approx 2^X.$

Let \mathcal{I} and \mathcal{J} be ideals on ω . The **Comparison Game** for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ is played as follow:

Player II wins if $\bigcup_{n \in \omega} I_n \in \mathcal{I} \iff \bigcup_{n \in \omega} J_n \in \mathcal{J}$.

Let \mathcal{I} and \mathcal{J} be ideals on ω . The **Comparison Game** for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ is played as follow:

Player II wins if $\bigcup_{n \in \omega} I_n \in \mathcal{I} \iff \bigcup_{n \in \omega} J_n \in \mathcal{J}$.

Let \mathcal{I} and \mathcal{J} be ideals on ω . The **Comparison Game** for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ is played as follow:

Player II wins if $\bigcup_{n\in\omega} I_n \in \mathcal{I} \iff \bigcup_{n\in\omega} J_n \in \mathcal{J}$.

Let \mathcal{I} and \mathcal{J} be ideals on ω . The **Comparison Game** for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ is played as follow:

Player II wins if $\bigcup_{n \in \omega} I_n \in \mathcal{I} \iff \bigcup_{n \in \omega} J_n \in \mathcal{J}$.

Question

What is the structure of (Borel ideals/ \simeq , \sqsubseteq)?

▲ 同 ▶ → ● 三

Question

What is the structure of (Borel ideals/ \simeq , \sqsubseteq)?

Let \mathcal{I} and \mathcal{J} be two ideals on ω . A function $f: \mathcal{I} \longrightarrow \mathcal{J}$ is called **Tukey** if

$\forall A \in \mathcal{J} \exists B \in \mathcal{I} \forall C \in \mathcal{I}(f(C) \subseteq A \Rightarrow C \subseteq B).$

We write

$\mathcal{I} \leq_{MT} \mathcal{J}$

if there is a monotone Tukey function from ${\mathcal I}$ to ${\mathcal J}.$

Connection: $\mathcal{I} \leq_{MT} \mathcal{J} \Longrightarrow \mathcal{I} \sqsubseteq \mathcal{J}$.

- **→** → **→**

Let \mathcal{I} and \mathcal{J} be two ideals on ω . A function $f: \mathcal{I} \longrightarrow \mathcal{J}$ is called **Tukey** if

$$\forall A \in \mathcal{J} \exists B \in \mathcal{I} \forall C \in \mathcal{I}(f(C) \subseteq A \Rightarrow C \subseteq B).$$

We write

$\mathcal{I} \leq_{MT} \mathcal{J}$

if there is a monotone Tukey function from ${\mathcal I}$ to ${\mathcal J}.$

Connection: $\mathcal{I} \leq_{MT} \mathcal{J} \Longrightarrow \mathcal{I} \sqsubseteq \mathcal{J}$.

同 ト イ ヨ ト イ ヨ ト

Let \mathcal{I} and \mathcal{J} be two ideals on ω . A function $f : \mathcal{I} \longrightarrow \mathcal{J}$ is called **Tukey** if $\forall A \in \mathcal{J} \exists B \in \mathcal{I} \forall C \in \mathcal{I}(f(C) \subseteq A \Rightarrow C \subseteq B).$

We write

 $\mathcal{I} \leq_{MT} \mathcal{J}$

if there is a monotone Tukey function from ${\mathcal I}$ to ${\mathcal J}.$

Connection: $\mathcal{I} \leq_{MT} \mathcal{J} \Longrightarrow \mathcal{I} \sqsubseteq \mathcal{J}$.

Let \mathcal{I} and \mathcal{J} be two ideals on ω . A function $f : \mathcal{I} \longrightarrow \mathcal{J}$ is called **Tukey** if $\forall A \in \mathcal{J} \exists B \in \mathcal{I} \forall C \in \mathcal{I}(f(C) \subseteq A \Rightarrow C \subseteq B).$ We write

$$\mathcal{I} \leq_{MT} \mathcal{J}$$

if there is a monotone Tukey function from $\mathcal I$ to $\mathcal J$.

Connection: $\mathcal{I} \leq_{MT} \mathcal{J} \Longrightarrow \mathcal{I} \sqsubseteq \mathcal{J}$.

Definition (W. Wadge)

Let $X, Y \subseteq \omega^{\omega}$. The **Wadge Game** for X and Y denoted by W(X, Y) is played as follow:

Denote $x = x_0 x_1 \dots x_n \dots$ and $y = y_0 y_1 \dots y_n \dots$ Player II wins if $x \in X \iff y \in Y$.

We write $X \leq_W Y$ if Player II has a winning strategy in W(X, Y). And $X \equiv_W Y$ if $X \leq_W Y \land Y \leq_W X$.

向 ト イヨ ト イヨト

$\mathcal{I} \sqsubseteq \mathcal{J} \Longleftrightarrow \tilde{\mathcal{I}} \leq_W \tilde{\mathcal{J}}$, where $\tilde{\mathcal{I}} = \{x \in \omega^{\omega} : rang(x) \in \mathcal{I}\}.$

- The game $G(\mathcal{I}, \mathcal{J})$ is determined for every pair \mathcal{I}, \mathcal{J} of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq -classes.

$$\mathcal{I} \sqsubseteq \mathcal{J} \iff \tilde{\mathcal{I}} \leq_W \tilde{\mathcal{J}}$$
, where $\tilde{\mathcal{I}} = \{x \in \omega^{\omega} : rang(x) \in \mathcal{I}\}$.

- The game $G(\mathcal{I}, \mathcal{J})$ is determined for every pair \mathcal{I}, \mathcal{J} of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq -classes.

$$\mathcal{I} \sqsubseteq \mathcal{J} \iff \tilde{\mathcal{I}} \leq_W \tilde{\mathcal{J}}$$
, where $\tilde{\mathcal{I}} = \{x \in \omega^{\omega} : rang(x) \in \mathcal{I}\}$.

- The game G(I, J) is determined for every pair I, J of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq -classes.

$$\mathcal{I} \sqsubseteq \mathcal{J} \iff \tilde{\mathcal{I}} \leq_W \tilde{\mathcal{J}}$$
, where $\tilde{\mathcal{I}} = \{x \in \omega^{\omega} : rang(x) \in \mathcal{I}\}$.

- The game G(I, J) is determined for every pair I, J of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq -classes.

$$\mathcal{I} \sqsubseteq \mathcal{J} \iff \tilde{\mathcal{I}} \leq_W \tilde{\mathcal{J}}$$
, where $\tilde{\mathcal{I}} = \{x \in \omega^{\omega} : rang(x) \in \mathcal{I}\}$.

- The game G(I, J) is determined for every pair I, J of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq -classes.

$$\mathcal{I} \sqsubseteq \mathcal{J} \iff \tilde{\mathcal{I}} \leq_W \tilde{\mathcal{J}}$$
, where $\tilde{\mathcal{I}} = \{x \in \omega^{\omega} : rang(x) \in \mathcal{I}\}.$

- The game $G(\mathcal{I}, \mathcal{J})$ is determined for every pair \mathcal{I}, \mathcal{J} of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq -classes.

$$\mathcal{I} \sqsubseteq \mathcal{J} \iff \tilde{\mathcal{I}} \leq_W \tilde{\mathcal{J}}$$
, where $\tilde{\mathcal{I}} = \{x \in \omega^{\omega} : rang(x) \in \mathcal{I}\}.$

- The game $G(\mathcal{I}, \mathcal{J})$ is determined for every pair \mathcal{I}, \mathcal{J} of Borel ideals.
- The order \sqsubseteq is well-founded.
- The comparison game is almost linear (all antichains have size at most 2).
- There are uncountable many \simeq -classes.

(1). For any Borel ideal \mathcal{I} . \mathcal{I} is F_{σ} if and only if $\mathcal{I} \simeq Fin$.

(2). There are at least two classes of $F_{\sigma\delta}(\Pi_3^0)$ non- $F_{\sigma}(\Sigma_2^0)$ -ideals.

3). Let \mathcal{I} be an analytic P-ideal. Then $\mathcal{I} \simeq Fin$ or $\mathcal{I} \simeq \emptyset \times Fin$.

(1). For any Borel ideal \mathcal{I} . \mathcal{I} is F_{σ} if and only if $\mathcal{I} \simeq Fin$.

(2). There are at least two classes of $F_{\sigma\delta}(\Pi_3^0)$ non- $F_{\sigma}(\Sigma_2^0)$ -ideals. (3). Let \mathcal{I} be an analytic *P*-ideal. Then $\mathcal{I} \simeq Fin$ or $\mathcal{I} \simeq \emptyset \times Fin$.

(1). For any Borel ideal \mathcal{I} . \mathcal{I} is F_{σ} if and only if $\mathcal{I} \simeq Fin$.

(2). There are at least two classes of $F_{\sigma\delta}(\Pi_3^0)$ non- $F_{\sigma}(\Sigma_2^0)$ -ideals.

(3). Let \mathcal{I} be an analytic P-ideal. Then $\mathcal{I} \simeq Fin$ or $\mathcal{I} \simeq \emptyset \times Fin$.

(1). For any Borel ideal \mathcal{I} . \mathcal{I} is F_{σ} if and only if $\mathcal{I} \simeq Fin$.

(2). There are at least two classes of $F_{\sigma\delta}(\Pi_3^0)$ non- $F_{\sigma}(\Sigma_2^0)$ -ideals.

(3). Let \mathcal{I} be an analytic *P*-ideal. Then $\mathcal{I} \simeq Fin$ or $\mathcal{I} \simeq \emptyset \times Fin$.

(1). Is the order \sqsubseteq linear?

(2). Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals?

(3). How many classes of $F_{\sigma\delta\sigma}$ -ideals are there?

- ₹ 🖬 🕨

(1). Is the order \sqsubseteq linear?

(2). Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals?

3). How many classes of $F_{\sigma\delta\sigma}$ -ideals are there?

- ₹ 🖬 🕨

(1). Is the order \sqsubseteq linear?

(2). Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals?

3). How many classes of $F_{\sigma\delta\sigma}$ -ideals are there?

Jialiang He Comparison Game On Trace Ideals

- ∢ ≣ ▶

(1). Is the order \sqsubseteq linear?

(2). Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals?

(3). How many classes of $F_{\sigma\delta\sigma}$ -ideals are there?

Let X be a Borel subset of 2^{ω} . The **trace ideal** of X, denoted by T(X), is the ideal on ${}^{<\omega}2$ generated by $\{\{x|n:n \in \omega\}: x \in X\}$.

Proposition (van. Engelen 1994)

Let $\Gamma \supseteq \Delta(D_{\omega}(\Sigma_{2}^{0}))$ be a Wadge degree such that $\forall n \in \omega \forall X \in \Gamma \Rightarrow X^{n} \in \Gamma$. If X is Γ , then T(X) is Γ .

A subset $A \subseteq 2^{\omega}$ is $D_{\omega}(\Sigma_2^0)$ if there is a increasing Σ_2^0 sequence $\{B_n : n \in \omega\}$ such that $A = \bigcup_{k \in \omega} B_{2k+1} \setminus B_{2k}$.

Lemma (van. Engelen)

If \mathcal{I} is an infinite Borel ideal on ω , then $\mathcal{I} \times \mathcal{I} \equiv_W \mathcal{I}$.

Let X be a Borel subset of 2^{ω} . The **trace ideal** of X, denoted by T(X), is the ideal on ${}^{<\omega}2$ generated by $\{\{x|n:n \in \omega\}: x \in X\}$.

Proposition (van. Engelen 1994)

Let $\Gamma \supseteq \Delta(D_{\omega}(\Sigma_{2}^{0}))$ be a Wadge degree such that $\forall n \in \omega \forall X \in \Gamma \Rightarrow X^{n} \in \Gamma$. If X is Γ , then T(X) is Γ .

A subset $A \subseteq 2^{\omega}$ is $D_{\omega}(\Sigma_2^0)$ if there is a increasing Σ_2^0 sequence $\{B_n : n \in \omega\}$ such that $A = \bigcup_{k \in \omega} B_{2k+1} \setminus B_{2k}$.

Lemma (van. Engelen)

If \mathcal{I} is an infinite Borel ideal on ω , then $\mathcal{I} \times \mathcal{I} \equiv_W \mathcal{I}$.

同 ト イ ヨ ト イ ヨ ト

Let X be a Borel subset of 2^{ω} . The **trace ideal** of X, denoted by T(X), is the ideal on ${}^{<\omega}2$ generated by $\{\{x|n:n \in \omega\}: x \in X\}$.

Proposition (van. Engelen 1994)

Let $\Gamma \supseteq \Delta(D_{\omega}(\Sigma_{2}^{0}))$ be a Wadge degree such that $\forall n \in \omega \forall X \in \Gamma \Rightarrow X^{n} \in \Gamma$. If X is Γ , then T(X) is Γ .

A subset $A \subseteq 2^{\omega}$ is $D_{\omega}(\Sigma_2^0)$ if there is a increasing Σ_2^0 sequence $\{B_n : n \in \omega\}$ such that $A = \bigcup_{k \in \omega} B_{2k+1} \setminus B_{2k}$.

Lemma (van. Engelen)

If \mathcal{I} is an infinite Borel ideal on ω , then $\mathcal{I} \times \mathcal{I} \equiv_W \mathcal{I}$.

Observation: Two $F_{\sigma\delta}$ non- F_{σ} -ideals: $\emptyset \times Fin$, $T(Fin^+)$. We have the following result:

Theorem

(1). Ø × Fin ⊈ T((Ø × Fin)⁺). Where Ø × Fin = {A ⊆ ω × ω : ∀n ∈ ω|{m : (n,m) ∈ A}| < ω}.
(2). T((Ø × Fin)⁺) ⊈ Ø × Fin.

Is the order ⊑ linear? No Observation: Two $F_{\sigma\delta}$ non- F_{σ} -ideals: $\emptyset \times Fin$, $T(Fin^+)$. We have the following result:

Theorem

(1). Ø × Fin ⊈ T((Ø × Fin)⁺). Where Ø × Fin = {A ⊆ ω × ω : ∀n ∈ ω|{m : (n,m) ∈ A}| < ω}.
(2). T((Ø × Fin)⁺) ⊈ Ø × Fin.

Is the order ⊑ linear? No Observation: Two $F_{\sigma\delta}$ non- F_{σ} -ideals: $\emptyset \times Fin$, $T(Fin^+)$. We have the following result:

Theorem

(1). Ø × Fin ⊈ T((Ø × Fin)⁺). Where Ø × Fin = {A ⊆ ω × ω : ∀n ∈ ω|{m : (n,m) ∈ A}| < ω}.
(2). T((Ø × Fin)⁺) ⊈ Ø × Fin.

Is the order \sqsubseteq linear? No

Let X and Y be Borel subset of $\mathcal{P}(\omega)$ with $[X] \supseteq D_2(\Sigma_2^0)$. $X \leq_W Y \Longrightarrow T(X) \sqsubseteq T(Y)$.

Lemma (J.Steel)

Let Γ be a Wedge class above $D_2(\Sigma_2^0)$. Then $\forall A, B((A \in \Gamma \land B \in \Gamma \setminus \check{\Gamma}) \Rightarrow A \leq_1 B)$. Where $A \leq_1 B$ means there is injection continuous $f: 2^{\omega} \longrightarrow 2^{\omega}$ such that $A = f^{-1}(B)$.

The key idea: If the result of Player I plays has finite many anti-chains, use $X \leq_W Y$ control.

If it has infinite many anti-chains, use 1-1 to preserve the result of Player II also has infinite many anti-chains.

Let X and Y be Borel subset of $\mathcal{P}(\omega)$ with $[X] \supseteq D_2(\Sigma_2^0)$. $X \leq_W Y \Longrightarrow T(X) \sqsubseteq T(Y)$.

Lemma (J.Steel)

Let Γ be a Wedge class above $D_2(\Sigma_2^0)$. Then $\forall A, B((A \in \Gamma \land B \in \Gamma \setminus \check{\Gamma}) \Rightarrow A \leq_1 B)$. Where $A \leq_1 B$ means there is injection continuous $f: 2^{\omega} \longrightarrow 2^{\omega}$ such that $A = f^{-1}(B)$.

The key idea: If the result of Player I plays has finite many anti-chains, use $X \leq_W Y$ control.

If it has infinite many anti-chains, use 1-1 to preserve the result of Player II also has infinite many anti-chains.

A⊒ ▶ ∢ ∃ ▶

Let X and Y be Borel subset of $\mathcal{P}(\omega)$ with $[X] \supseteq D_2(\Sigma_2^0)$. $X \leq_W Y \Longrightarrow T(X) \sqsubseteq T(Y)$.

Lemma (J.Steel)

Let Γ be a Wedge class above $D_2(\Sigma_2^0)$. Then $\forall A, B((A \in \Gamma \land B \in \Gamma \setminus \check{\Gamma}) \Rightarrow A \leq_1 B)$. Where $A \leq_1 B$ means there is injection continuous $f: 2^{\omega} \longrightarrow 2^{\omega}$ such that $A = f^{-1}(B)$.

The key idea: If the result of Player I plays has finite many anti-chains, use $X \leq_W Y$ control.

If it has infinite many anti-chains, use 1-1 to preserve the result of Player II also has infinite many anti-chains.

Let $A \subseteq 2^{\omega}$ be a Borel subset such that its Wadge class is above $D_{\omega}(\Sigma_2^0)$ and B be any Borel set. If $B^c \not\leq_W A$, then $T(T(B)^+) \not\subseteq T(A)$.

Corollary

If \mathcal{I}, \mathcal{J} be two Borel ideals above $D_{\omega}(\Sigma_2^0)$, then $\mathcal{I} \equiv_W \mathcal{J} \Leftrightarrow T(\mathcal{I}) \simeq T(\mathcal{J}).$

Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals? How many classes of $F_{\sigma\delta\sigma}$ -ideals are there? No, there are ω_1 many classes.

Let $A \subseteq 2^{\omega}$ be a Borel subset such that its Wadge class is above $D_{\omega}(\Sigma_2^0)$ and B be any Borel set. If $B^c \not\leq_W A$, then $T(T(B)^+) \not\subseteq T(A)$.

Corollary

If \mathcal{I}, \mathcal{J} be two Borel ideals above $D_{\omega}(\Sigma_2^0)$, then $\mathcal{I} \equiv_W \mathcal{J} \Leftrightarrow T(\mathcal{I}) \simeq T(\mathcal{J}).$

Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals? How many classes of $F_{\sigma\delta\sigma}$ -ideals are there? No, there are ω_1 many classes.

Let $A \subseteq 2^{\omega}$ be a Borel subset such that its Wadge class is above $D_{\omega}(\Sigma_2^0)$ and B be any Borel set. If $B^c \not\leq_W A$, then $T(T(B)^+) \not\subseteq T(A)$.

Corollary

If \mathcal{I}, \mathcal{J} be two Borel ideals above $D_{\omega}(\Sigma_2^0)$, then $\mathcal{I} \equiv_W \mathcal{J} \Leftrightarrow T(\mathcal{I}) \simeq T(\mathcal{J}).$

Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals? How many classes of $F_{\sigma\delta\sigma}$ -ideals are there? No, there are ω_1 many classes.

Let $A \subseteq 2^{\omega}$ be a Borel subset such that its Wadge class is above $D_{\omega}(\Sigma_2^0)$ and B be any Borel set. If $B^c \not\leq_W A$, then $T(T(B)^+) \not\subseteq T(A)$.

Corollary

If \mathcal{I}, \mathcal{J} be two Borel ideals above $D_{\omega}(\Sigma_2^0)$, then $\mathcal{I} \equiv_W \mathcal{J} \Leftrightarrow T(\mathcal{I}) \simeq T(\mathcal{J}).$

Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals? How many classes of $F_{\sigma\delta\sigma}$ -ideals are there? No, there are ω_1 many classes.

$T(\mathcal{I})$ vs. $\mathcal I$

Theorem

Let \mathcal{I} be a Borel ideal. Then $T(\mathcal{I}) \sqsubseteq \mathcal{I}$.

But we don't clear whether $T(\mathcal{I}) \simeq \mathcal{I}$, Form above theorem we have that:

Corollary

For any Borel ideal \mathcal{I} with Wadge class above $D_{\omega}(\Sigma_2^0)$, we have $T(T(\mathcal{I})) \simeq T(\mathcal{I})$.

- **→** → **→**

$T(\mathcal{I})$ vs. \mathcal{I}

Theorem

Let \mathcal{I} be a Borel ideal. Then $T(\mathcal{I}) \sqsubseteq \mathcal{I}$.

But we don't clear whether $T(\mathcal{I}) \simeq \mathcal{I}$, Form above theorem we have that:

Corollary

For any Borel ideal \mathcal{I} with Wadge class above $D_{\omega}(\Sigma_2^0)$, we have $T(T(\mathcal{I})) \simeq T(\mathcal{I})$.

Definition

For every
$$0 < \mu < \omega_1$$
, we let $Fr_{2\mu} = \{S \subseteq \omega^{\mu} : |S|_L < \omega^{\mu}\}$,
 $Fr_{2\mu+1} = \{S \subseteq \omega^{\mu+1} : \forall m \in \omega((S)_m \in Fr_{2\mu})\}.$

Theorem

For every $0 < \mu < \omega_1$, $T(Fr_{2\mu}) \simeq Fr_{2\mu}$, $T(Fr_{2\mu+1}) \simeq Fr_{2\mu+1}$.

Corollary

Let \mathcal{I} be a Borel ideal. If $Fr_{2\mu} \leq_W \mathcal{I}$, then $Fr_{2\mu} \sqsubseteq \mathcal{I}$ and if $Fr_{2\mu+1} \leq_W \mathcal{I}$, then $Fr_{2\mu+1} \sqsubseteq \mathcal{I}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Definition

For every
$$0 < \mu < \omega_1$$
, we let $Fr_{2\mu} = \{S \subseteq \omega^{\mu} : |S|_L < \omega^{\mu}\},$
 $Fr_{2\mu+1} = \{S \subseteq \omega^{\mu+1} : \forall m \in \omega((S)_m \in Fr_{2\mu})\}.$

Theorem

For every $0 < \mu < \omega_1$, $T(Fr_{2\mu}) \simeq Fr_{2\mu}$, $T(Fr_{2\mu+1}) \simeq Fr_{2\mu+1}$.

Corollary

Let \mathcal{I} be a Borel ideal. If $Fr_{2\mu} \leq_W \mathcal{I}$, then $Fr_{2\mu} \sqsubseteq \mathcal{I}$ and if $Fr_{2\mu+1} \leq_W \mathcal{I}$, then $Fr_{2\mu+1} \sqsubseteq \mathcal{I}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

For every
$$0 < \mu < \omega_1$$
, we let $Fr_{2\mu} = \{S \subseteq \omega^{\mu} : |S|_L < \omega^{\mu}\}$,
 $Fr_{2\mu+1} = \{S \subseteq \omega^{\mu+1} : \forall m \in \omega((S)_m \in Fr_{2\mu})\}.$

Theorem

For every $0 < \mu < \omega_1$, $T(Fr_{2\mu}) \simeq Fr_{2\mu}$, $T(Fr_{2\mu+1}) \simeq Fr_{2\mu+1}$.

Corollary

Let \mathcal{I} be a Borel ideal. If $Fr_{2\mu} \leq_W \mathcal{I}$, then $Fr_{2\mu} \sqsubseteq \mathcal{I}$ and if $Fr_{2\mu+1} \leq_W \mathcal{I}$, then $Fr_{2\mu+1} \sqsubseteq \mathcal{I}$.

伺 と く ヨ と く ヨ と

э

A dichotomy for analytic P-ideal

Theorem (M.Hrušák, D. M. Alcántara)

Let \mathcal{I} be an analytic P-ideal. Then $\mathcal{I} \simeq Fin$ or $\mathcal{I} \simeq \emptyset \times Fin$.

Theorem

Let \mathcal{I} be an analytic P-ideal. If \mathcal{I} is non- F_{σ} , then \mathcal{I} is $F_{\sigma\delta}$ -complete.

Introduction Progress Main results

A dichotomy for analytic P-ideal

Theorem (M.Hrušák, D. M. Alcántara)

Let \mathcal{I} be an analytic *P*-ideal. Then $\mathcal{I} \simeq Fin$ or $\mathcal{I} \simeq \emptyset \times Fin$.

Theorem

Let \mathcal{I} be an analytic P-ideal. If \mathcal{I} is non- F_{σ} , then \mathcal{I} is $F_{\sigma\delta}$ -complete.

 $\emptyset \times Fin \not\sqsubseteq T((\emptyset \times Fin)^+)$

The idea of proof.

We construct a winning strategy for Player I in $G(\emptyset \times Fin, T((\emptyset \times Fin)^+)).$

The possible case 1: The maximal anti-chains of result of Player II is finite.

For every $1 \leq n < \omega$ we define a game G_n as follows. In step k, Player I pick a $I_k \in \emptyset \times Fin$ and Player II picks a $J_k \in T((\emptyset \times Fin)^+)$ such that $\forall i < k(J_i \subseteq J_k)$ and the maximal cardinal of an antichain of J_k is n. Player II wins if $\bigcup_{n \in \omega} I_n \in \emptyset \times Fin$ iff $\bigcup_{n \in \omega} J_n \in T((\emptyset \times Fin)^+)$. **Claim:** Player I have a winning strategy σ_n in G_n . (Proved by induction on n)

 $\emptyset \times Fin \not\sqsubseteq T((\emptyset \times Fin)^+)$

The idea of proof.

We construct a winning strategy for Player I in $G(\emptyset \times Fin, T((\emptyset \times Fin)^+)).$

The possible case 1: The maximal anti-chains of result of Player II is finite.

For every $1 \le n < \omega$ we define a game G_n as follows. In step k, Player I pick a $I_k \in \emptyset \times Fin$ and Player II picks a $J_k \in T((\emptyset \times Fin)^+)$ such that $\forall i < k(J_i \subseteq J_k)$ and the maximal cardinal of an antichain of J_k is n. Player II wins if $\bigcup_{n \in \omega} I_n \in \emptyset \times Fin$ iff $\bigcup_{n \in \omega} J_n \in T((\emptyset \times Fin)^+)$. **Claim:** Player I have a winning strategy σ_n in G_n . (Proved by induction on n)

 $\emptyset \times Fin \not\sqsubseteq T((\emptyset \times Fin)^+)$

The idea of proof.

We construct a winning strategy for Player I in $G(\emptyset \times Fin, T((\emptyset \times Fin)^+)).$

The possible case 1: The maximal anti-chains of result of Player II is finite.

For every $1 \leq n < \omega$ we define a game G_n as follows. In step k, Player I pick a $I_k \in \emptyset \times Fin$ and Player II picks a $J_k \in T((\emptyset \times Fin)^+)$ such that $\forall i < k(J_i \subseteq J_k)$ and the maximal cardinal of an antichain of J_k is n. Player II wins if $\bigcup_{n \in \omega} I_n \in \emptyset \times Fin$ iff $\bigcup_{n \in \omega} J_n \in T((\emptyset \times Fin)^+)$. Claim: Player I have a winning strategy σ_n in G_n . (Proved by induction on n)

 $\emptyset \times Fin \not\sqsubseteq T((\emptyset \times Fin)^+)$

The idea of proof.

We construct a winning strategy for Player I in $G(\emptyset \times Fin, T((\emptyset \times Fin)^+)).$

The possible case 1: The maximal anti-chains of result of Player II is finite.

For every $1 \leq n < \omega$ we define a game G_n as follows. In step k, Player I pick a $I_k \in \emptyset \times Fin$ and Player II picks a $J_k \in T((\emptyset \times Fin)^+)$ such that $\forall i < k(J_i \subseteq J_k)$ and the maximal cardinal of an antichain of J_k is n. Player II wins if $\bigcup_{n \in \omega} I_n \in \emptyset \times Fin$ iff $\bigcup_{n \in \omega} J_n \in T((\emptyset \times Fin)^+)$. **Claim:** Player I have a winning strategy σ_n in G_n . (Proved by induction on n)

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin \ \omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:

Let $\{X_n : n \in \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω . In step 0, Play I plays \emptyset , and in step k > 0, Let M(k) be the maximal cardinal of an antichain in $\bigcup_{i < k} J_i$.

(1) If M(k) = M(k-1), then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i < k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.

(2) If M(k) > M(k-1), then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i < k} J_i$.

- ∢ ≣ ▶

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin \ \omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:

Let $\{X_n : n \in \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω . In step 0, Play I plays \emptyset , and in step k > 0, Let M(k) be the maximal cardinal of an antichain in $\bigcup_{i < k} J_i$.

(1) If M(k) = M(k-1), then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i < k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.

(2) If M(k) > M(k-1), then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i < k} J_i$.

- ∢ ≣ ▶

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin \ \omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:

Let $\{X_n : n \in \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω . In step 0, Play I plays \emptyset , and in step k > 0, Let M(k) be the maximal cardinal of an antichain in $\bigcup_{i < k} J_i$.

(1) If M(k) = M(k-1), then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i < k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.

(2) If M(k) > M(k-1), then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i < k} J_i$.

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin \ \omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:

Let $\{X_n : n \in \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω . In step 0, Play I plays \emptyset , and in step k > 0, Let M(k) be the maximal cardinal of an antichain in $\bigcup_{i < k} J_i$.

(1) If M(k) = M(k-1), then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i < k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.

(2) If M(k) > M(k-1), then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i < k} J_i$.

Image: A image: A

The possible case 2: The maximal anti-chains of result of Player II is infinite.

Copy $\emptyset \times Fin \ \omega$ many times by the structure of $\emptyset \times Fin$.

The strategy of Player I as follows:

Let $\{X_n : n \in \omega\} \subseteq [\omega]^{\omega}$ be a partition of ω . In step 0, Play I plays \emptyset , and in step k > 0, Let M(k) be the maximal cardinal of an antichain in $\bigcup_{i < k} J_i$.

(1) If M(k) = M(k-1), then Player I plays the game $G_{M(k-1)}$ in $X_{M(k-1)} \times \omega$ think Player II plays $\bigcup_{i < k} J_i$ in a new step and plays follow the winning strategy $\sigma_{M(k-1)}$.

(2) If M(k) > M(k-1), then Player I has to abandon what he has played and begin a new game of $G_{M(k)}$ inside $X_{M(k)} \times \omega$ follow the winning strategy $\sigma_{M(k)}$, and think Player II in step 0 plays $\bigcup_{i < k} J_i$.

- 4 同 6 4 日 6 4 日 6

Děkuji!

æ

э